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Abstract—High performance routers are mostly implemented 
with network processors because of their software 
programmability, hardware computation power, and high 
bandwidth interface design. In this paper, a 5-dimensional packet 
classification algorithm based on the hierarchal binary prefix 
search is first implemented in IXP1200 network processor. Our 
classification implementation is faster and smaller than other 
existing schemes and makes it possible to put entire rule table in 
SRAM. Moreover, we proposed a cache mechanism for IXP1200 
because we observed that the traffic patterns of backbone routers 
have a strong temporal locality. Our proposed cache scheme not 
only caches the results from packet classification but also caches 
the results from IP lookups. Only one SRAM read is needed to 
perform IP lookups and packet classification for a cache hit. 
With this cache mechanism, the throughput of our system is very 
close to the theoretical maximum bandwidth with a reasonable 
hit ratio. Specifically, with a cache of 8192 rule entries, the 
proposed cache mechanism has 50% improvement in throughput 
over the system with no cache. 

Keywords—IXP1200 network processor, binary prefix search, IP 
lookups, packet classification, and cache.. 

1 INTRODUCTION 
With the evolution of network technologies, the 

requirements for the routers have become higher. Traditionally, 
there are two major types of router implementations: software 
and hardware. In software-based routers, the whole routing 
process is programmed and run on general-purpose processors. 
They can support new services by writing codes and updating 
the software. In hardware-based routers, Application-Specific 
Integrated Circuit (ASIC) chips are designed to support higher 
processing power. However, designing and manufacturing 
ASIC chips are expensive and time comsuming and lack the 
flexibility of adding new services.  

Nowadays, network processors are emerging as an 
alternative solution to ASIC for providing scalable capability 
for user-plane packet processing while retaining 
programmability. Network processors typically consist of an 
embedded control processor and several data processing 
engines. The control processor is responsible for executing the 
control plane functionality (e.g., routing table maintenance), 
whereas data processing engines perform the data-plane 
operations (e.g., IP Lookups). An example of such a network 
processor is the Intel IXP1200 (Internet Exchange Processor), 
which consists of one StrongArm core and six co-processors, 
known as microengines. Each microengine can execute up to 
four threads and its instruction set is specially designed for 
packet processing. 

In addition to the general data-plane operations, many 
routers support packet classification. Today, there are many 
layer-4 switching technologies such as Resource Reservation 
Protocol, differentiated services, and quality of service. All 
require the routers to classify the packets into different flows 
and then perform appropriate actions. The packet 
classification is supported according to pre-defined rules. 

Typically, these rules based on header fields in layers 2, 3, and 
4. Rule match may be the exact matching or prefix/range 
matching on multiple fields. IP lookup is a special case of one 
dimensional classification. A multi-dimensional classification 
includes more than one field and the packet to be processed 
should be matched with all of these fields. 

In this paper, we use the RadiSys ENP-2505 evaluation 
board [1] that consists of one IXP1200 network processor chip 
and four Ethernet ports (4*100Mbps) as our development 
environment. Our router design is based on RFC1812. In 
addition, we used a multi-dimensional classification algorithm 
based on binary prefix search and implemented a standard 
five-dimensional classifier (including IP source address and 
destination address fields, transport protocol fields, and source 
and destination port fields) in IXP1200. The initial results 
show that the performance of classification based on binary 
prefix search is faster and more scalable than other schemes. 
However, our system still needs more input processing power 
for achieving the line speed. This means we need allocate 
more microengines for input processing. For reducing the 
resources requirement in IXP1200 and leaving ample 
headroom for additional/faster ports, we propose a layer-4 
cache design for IXP1200 because we observed that backbone 
router have strong temporal locality. Our proposed cache 
scheme caches the results not only from packet classification 
but also from IP lookups. Only one SRAM-read is needed to 
perform IP address Lookups and packet classification 
procedure for a cache hit. With this cache mechanism, our 
system performance can be improved significantly. 

The rest of the paper is organized as follows. Our router 
implementation augmented with a 5D classification algorithm 
based on binary prefix searches is illustrated in section 4. The 
performance results are also included. To further optimize the 
performance of our router, we design a layer-4 cache for 
IXP1200 and show the performance improvement in section 5. 
The final conclusion of this paper is given in the last section. 

2 IMPLEMENTATION OF IXP1200 ROUTER  
The functional specification of our router 

implementation is based on RFC 1812 [1]. The main 
functionality of the router includes the following: packets with 
invalid address, invalid IP version numbers, or TTL=0 and 
broadcast packets are dropped. Packet header checksum is 
calculated and the packet is dropped if the checksum is invalid. 
After decrementing the valid TTL and recalculating checksum, 
the packet is routed to the output port by performing the IP 
lookups. 

In addition, our router also implements packet 
classification. For convenience, we name this router as IXP 
Router. Figure 2.1 shows the software architecture of IXP 
Router, which follows the IXP1200 ACE programming model.  

Most ACEs components in the figure are supported by 
IXA SDK except the Classifier ACE. All microblocks in 



microengines are implemented as Micro C functions. We use 
two microengines for processing packets in data-plane, one for 
receiving packets and the other for transmitting packets. The 
tasks of Receive/Transmit microengine threads are listed in 
table 2.1. 

Table 2: microengine thread assignments 

microengine Thread Port/Task 
Assignment Comments 

Receive 
microengine 

Thread 0, 
1, 2, and 
3 

4 Receive Thread Thread i to 
receive port i for 
i = 0 .. 3 

Thread 0 Transmit 
Scheduling 

Transmit 
microengine 

Thread 
1,2, and 3 

Three dynamically 
assigned Transmit 
Threads 

microengine 4 
transmits on four 
ports (0~3). (One 
scheduler thread 
and three 
transmit threads) 

The Classifier ACE builds the special data structure 
based on rule table. Then the Classifier microblock classifies 
packets into different flows according to the data structure 
built by Classifier ACE. The major task of L3 Forwarder 
MicroACE is to perform IP lookups and then forwards packets 
to appropriate output ports. Based on IXP SDK, we adopt 
multibit tries of 4-bit stride [16] as the IP lookups algorithm. 
The L3 Forwarder microblock focuses on searching the next 
hop route information. For certain types of packets (e.g. 
packets with IP options in the header, fragmented packets, 
ARP, etc.), this microblock sends them to the L3 Forward 
ACE for performing appropriate action. These packets are 
called “exception” packets. 
Packet Flow in IXP Router: 

Receiving and transferring packets are two basic tasks of 
the router. When a packet arrives, it is divided into several 64-
byte chunks called mpackets and put into SDRAM. In order to 
reassemble the packet, each mpacket can be identified as the 
start of the packet (SOP), the end of packet (EOP), both, or 
neither. The packet in SDRAM will be serviced by another 
application (i.e. IP Lookups procedure) and be assigned 
outgoing port number. Finally, the mapckets are put into the 
outgoing MAC buffer sequentially. The outgoing MAC 
devices transmit the complete packet when detecting it is EOP. 
Packet Classification Algorithm 

In this subsection, we shall illustrate the multi-
dimensional classification algorithm that is implemented in 
IXP1200. First of all, we briefly describe the binary prefix 
search [3] that is foundation of the classification algorithm. 
Then we describe the details of the multi-dimensional packet 
classification. Finally, the performance of classification 
algorithm is evaluated on the platform of IXP1200. 
Binary Prefix Search 

To apply the binary search in a set of prefixes, two 
problems must to be taken into account. The first one is that 
the binary search works only for sorted lists. We must have a 
mechanism that can compare and sort the prefixes. Therefore, 
the comparison rule defined in [3] is given as follows. 

Example 1: Given three 8-bit prefixes in ternary format, 
A=0000-0***, B=0000-01**, and C=10**-****. Based on the 
definition, we have A < B < C.  

The second problem is that prefix enclosure defined in 
[3] may result in multiple matches. From the same example 
above, an 8-bit stream “0000-0101” will match not only prefix 
A but also prefix B. Prefix B is enclosed by prefix A. The 
characteristic of “prefix enclosure” may make the exact match 
search algorithms such as binary search fail. To solve this 
problem, the sorted array used by binary search must be 

constructed by the enclosure split process, which includes the 
following steps: 

Step 1. Build the binary trie according to the prefixes set. 
Step 2. Make the binary trie complete. 
Step 3. Store all leaf nodes of binary trie in an array 

sequentially by an inorder traversal. 
Step 4. Perform merge for compressing the prefix array. 

We give a simple example to illustrate above steps in 
detail. Assuming there are four prefixes (A=1*, B=000*, 
C=11*, and D=111*). First, we build the binary trie shown in 
Fig. 2.2(a) and then convert this binary trie into a complete 
binary trie shown in Fig. 2.2(b). In the complete binary trie, all 
prefixes are stored in the leaf nodes. The prefix enclosure 
problem is now removed because all the prefixes from the 
complete binary trie are disjoint with each other. All the 
prefixes in leaf nodes are stored in a prefix array by 
performing an inorder traversal (Fig. 2.2(c)). Note that 
enclosure split process may generate some auxiliary prefixes. 
To decrease the number of auxiliary prefixes, “prefix merge” 
scheme [3] was proposed for handling this problem. It tells us 
that the consecutive prefixes can be merged, if they are 
generated from the same prefix. Take Fig. 2.2(c) as our 
example. Because the second and the third entry are both 
generated from prefix A, they can be merged together. Fig. 
2.2(d) shows the merged results. After “prefix merge” scheme, 
we can apply the binary search to look for the longest prefix 
search. Detailed search procedure for merged prefix array can 
be found in [3]. Notice that, when the search reaches the final 
two prefixes, both prefix need to be matched against the input 
IP. The longest prefix of the two is matched first. If the 
longest prefix matches the input IP, then it is done. Otherwise, 
the other prefix is matched against the input IP. It is possible 
that both prefixes do not match the input IP. 
Multi-Dimensional Packet Classification  

Our goal is to construct a standard five-dimensional 
classifier including IP source address and destination address 
fields, transport protocol fields, and source and destination 
port fields. The IP source address and destination address 
fields are in prefix format, which can apply binary prefix 
search directly. The source port and destination port fields 
may form in range format. The ranges are converted into 
prefix format using the technique described in [18]. 

Now we illustrate how the binary prefix search can be 
applied to the multi-dimensional packet classification. 
Assuming a d-dimensional rule is in a form of ri=(F1i,…Fdi), 
where Fik, called the Kth filter, is a variable length prefix bit 
string. We use r = (F1, … Fd) when no confusion is incurred. 
The proposed d-dimensional classification algorithm is 
described as follows.  

1. Build the binary based on F1 of the rule table.  
2. Push all the sub-rules (F2, … Fd) of enclosing nodes to 

their descendant nodes of the F1 binary trie. We call 
this operation the rule pushing step.   

3. Perform the enclosure split process based on F1 to 
construct the sequential list of sorted nodes. Now each 
node contains multiple entries of sub-rules (F2, … Fd). 

4. Continue steps 1, 2, and 3 for each dimension except 
that the rule push step (step 2) is not required for last 
dimension. 

Consider the 2D rule table consisting of A=(*,01*), 
B=(000*,000*), C=(001*,*), and D=(0*,111*). We first build 
the binary trie according to the field 1 of classifier shown in 
Fig. 2.3(a). Secondly, the rules of enclosing prefixes are 
duplicated and pushed to their descendant prefixes as shown 
in Fig. 2.3(b). And then the enclosure split process is 
performed on the field 1 binary trie with rule duplications. 

The inequality 0<*<1 is used to compare two prefixes in 
the ternary representation of prefixes. 



This example does not introduce any auxiliary nodes. Now the 
sequential list of the rules based on filed 1 is completed. 

Each element of the sequential list constructed so far 
contains the field 2 rule information. We need to construct the 
binary tries for all the nodes based on filed 2. Fig. 2.3(c) 
shows the binary tries constructed. Since this the last 
dimension, no rule pushing is required. We then perform 
enclosure split process to add the necessary auxiliary prefixes 
of field 2. Fig. 2.3(d) shows the 2-D view of the structure, 
which is implemented, in a 2-level hierarchy shown in Fig. 
2.3(e). 

Assume the first two fields of the incoming packet are 
(0000, 0000) and the rule set is the one described above. The 
first-level list in Fig. 2.3(e) is first checked with field 1 that is 
0000. Binary search finds that the longest prefix match is B. 
Then following the pointer from B, binary search is performed 
using field 2 that is 0000. Field 2 of B is matched. Therefore, 
the matched rule is B. 

So far, we have described how to apply binary prefix 
search to multidimensional classifier and give an example of 
2D classifier. In our works, we implement a 5-dimensional 
classifier for IXP1200 by constructing five sorted prefix array. 
The hierarchical sorted prefixes are in the order of protocol, 
destination address, source address, destination port, and 
source port. In the first 4 levels of the hierarchy lists, we only 
need longest prefix match, without considering the priorities 
of the rules. Only at the least level, we need to determine 
which rule’s priority is the highest. 
Performance Evaluation  

In order to evaluate the performance and scalability of 
our scheme, we use synthetic rule tables of various sizes. 
These synthetic tables are generated by using ClassBench, 
which is a publicly available tool for benchmarking packet 
classification algorithms [20]. Table 2.2 shows the memory 
requirements of the proposed 5-dimensional scheme. In 
addition, we also implement 2-D version of Grid of Trie [18] 
to compare with 5-D version of the proposed scheme. All 
experiments are evaluated by using IXP NetBench, a traffic 
generator/analyzer developed by our lab.  
Table 2.2 Memory required by proposed scheme with 
synthetic rule tables. 

Memory Requirement Table 
Name 

size 
Proposed 5D classifier GOT 2D classifier 

50_rule 50 2.96KB 20.99KB 
100_rule  100 4.79KB 31.57KB 
500_rule 500 22.22KB 92.46KB 
1000_rule 1000 43.29KB 189.88KB 
Grid-of-Tries 

Memory requirement is the critical issue for 
implementing a classification algorithm on the platform of 
IXP1200 because of the limited SRAM size (only 4MB are 
available in our evaluation board). We surveyed several 
packet classification algorithms in [4]. By considering the 
requirement in both memory and performance, we think the 
Grid-of-Tries may be suitable in IXP1200 because it avoids 
backtracking problem of the hierarchical tries [18] and reduces 
the storage requirement of the set purring tries [18]. Therefore, 
we implemented 2-D version of Grid-of-Tries and evaluated 
its performance. Note that we set a simple 2D version of rule 
table for testing the Grid-of-Tries in this part and use IXP 
NetBench for generating traffic streams with different size of 
packets. Fig. 2.4 shows the experimental results. It can be seen 
that IXP Router cannot perform very well with small packet 
sizes. We doubt that the bottlenecks of our system occur in 
receiving process. However, in hardware mode, we can only 
get the router’s throughputs by IXP NetBench. But in 
simulation mode, the Developer Workbench can provide 

detailed processing information such as memory and thread 
histories, memory reference latencies and cycle-by-cycle 
interactions among the threads and memory units. This 
information is very useful for analyzing our system. Therefore, 
we decide to execute IXP Router in simulation mode and 
divide the tasks of Receive microengine into five categories 
for determining which one needs maximum processing time 
and is the bottleneck. These five categories are Receive Packet, 
Classifier (2D Grid-of-Tries), IP Lookups (multibit tries of 4-
bit stride), Miscellaneous, and Queuing . 

The queuing category has two types of actions: queuing 
packet for slow-path processing (StrongARM) or queuing 
packet for fast-path processing (microengines). The 
miscellaneous category consists of Layer 2 Header Validation, 
Layer 3 Header Validation and TTL validation. They are 
described as follows. 
1. Layer 2 Header Validation: Ensure the destination MAC 

address of the datagram matches the destination MAC 
address of the interface where the datagram is received. 
(RFC1812, Section 5.3.4). If a mismatch occurs, check the 
Ethernet type, if it equals 806 (ARP request) and L2 
destination MAC address is broadcast, this packet is 
queued for slow-patch exception handling (StrongARM 
exception handling). Otherwise, drop this packet. 

2. Layer 3 Header Validation: Checking the packet’s length 
is reasonable and that the IP version, header length, packet 
length, and checksum fields are valid. Checking IP 
source/destination address is legal unicast address. 

3. TTL Validation: If the TTL value is smaller than one, this 
packet is queued for slow-patch exception handling. 
Otherwise, it decrements the TTL and recalculates the 
checksum. 

Now, we can gather the required processing time of each 
category by analyzing the thread execution history using 
Developer Workbench. The simulated results are shown in Fig. 
2.5. Only the task of receiving packet will be influenced 
significantly with bigger packet size. Not surprisingly, the 
Classifier is the heavy task of Receive microengine. Each 
search almost requires 3500 clock cycles that take up 70% 
processing time for a 64-byte packet. Therefore, the packet 
classification algorithm, Grid-of-Tires, can not perform well 
in IXP1200. Although Grid-of-Tries bounds memory usage to 
O(NW) but the search time is O(dW), where N is the number 
of filters and W is the maximum number of bits specified in 
the source or destination fields.  For the case of searching on 
IPv4 source and destination address prefixes, it may need 65 
memory accesses in the worst case. In this environment, we 
set prefix length “30” in the rule table, which is very closely to 
the worst case. In [20], David E. Taylor and Jonathan S. 
Turner performed a battery of analyses on 12 real rule tables 
provided by Internet Service Providers (ISPs). Unfortunately, 
we find that the proportion of maximum address prefix length 
(32) takes up higher percentage in real rule table. It should be 
concluded, from what has been said above, that trie based 
packet classification algorithms are not suitable in IXP1200. 
Therefore, we didn’t spend more time on implementing the 
EGT (5D-D version of Grid-of-Tries), which may requires 84 
to 137 memory accesses per lookup reported as in [2]. 
Scalability Test 

To conduct the scalability test, we set microengine 0 as 
Receive microengine and microengine 4 as Transmit 
microengine for processing packets. One input traffic stream 
is generated by IXP NetBench with different size of packets 
for analyzing the throughput based on different rule tables. 
Note that the packet pattern of traffic stream must be 
predefined based on the synthetic rule tables and the 
forwarding table. This test is to investigate the scalability of 
our proposed scheme. Fig. 2.6 shows the experimental results. 
We can find that the throughputs of our system are very 



closely with different size of rule tables. Observably, our 
proposed scheme has high scalability. One reason is that our 
proposed scheme is logarithmic search method. When 
increasing the number of rules in rule table, the processing 
time won't be linearly increased but logarithmically increased. 
The other reason is that most rules are independent with each 
other; the enclosing rules are not very popular in the common 
case. Specifically, our proposed scheme for 500 rules achieves 
throughput of 38.9 Mbps at minimal size of packets, which is 
much better than the result reported in [18]. 
Multi-Threads Test 

As described in section 3, the design of our system takes 
advantage of multi-treads architecture of IXP1200. Each 
thread of receive microengine services specific port of our 
system. Above test involves only one traffic stream 
transmitted by one port of IXP NetBench. In this kind of 
situation, only one thread of Receive microengine will be 
waked up to service this traffic stream. To wake up the other 
threads of Receive microengine and evaluate the maximum 
throughput of our system, we configure several traffic streams 
(1~4) by IXP NetBench and transmit them to different ports of 
router. Fig. 2.7 shows the experimental results. Naturally, the 
throughout of two threads is approximately two times of the 
one of a single thread. However, due to the lack of the 
computing power, the throughout of three or four threads in a 
microengine is not three or four times of the performance by 
only one thread. 
Multi-microengine Test 

For improving the performance of packets of smaller 
sizes, increasing the processing power is the straightforward 
method. Above test only uses one Receive microengine for 
dealing with the input packets. In this part, we configure two 
microengines (micorengine 0 and microengine 1) as Receive 
microengines. In this way, one port can be serviced by two 
receive treads concurrently. Note that we must increase 
several mutex operations in our code for coordinating threads 
with competitive problem. Figure 2.8 shows the experimental 
results. We can find that the throughout of two microengines 
approximately achieves to maximum transmit speed of IXP 
NetBench. Increasing the computing power can improve the 
performance of our system. However, it also increases the 
used resources of IXP1200. For reducing the used resources of 
IXP1200 and leaving ample headroom for additional/faster 
ports, we propose a layer-4 cache mechanism for IXP1200 in 
next section.   
3 Cache Design for IXP1200 

Cache has been proved to be a very effective technique 
to improve memory access speed. Nowadays, on-chip cache 
memory is usually designed for general processor (also called 
CPU cache). However, in IXP1200, the microengines do not 
have cache memory but they share three different memory 
interfaces: SRAM, SDRAM and Scratchpad. Our idea is to 
design a cache mechanism in IXP1200 for improving packet 
classification and IP lookups. To select the appropriate 
memory interface for caching the layer-3 and layer-4 
information, we measured the latencies for reading/writing 
different size of data based on different types of memories. 
The SRAM read/write speed is faster than SDRAM and very 
close to scratchboard memory and the size in IXP1200 is big 
enough to hold layer routing tables and classification rule 
tables. Therefore , we selected SRAM as cache memory. 

Fig. 3.1 illustrates the functional blocks of our caching 
approach for IXP1200, which is similar to CPU cache. Each 
cache block consists of one or more cache entries, which are 
the basic unit for storing cache information including Flow-ID 
and searching results (from classification and IP lookups). Our 
cache approach consists of three major steps that are described 
as follow. 

1. When a packet arrives, the packet header information 
(Flow-ID) is used to generate cache index via hash which 
will be decreased later. With this cache index, we can get 
the number of cache block and the meta information of 
cache block.  

2. As long as the incoming Flow-ID can match one cache 
entry in the cache block (cache hit), no further searches 
are needed; that is, this cache entry gives us the layer-3 
and layer-4 forwarding information: Classifier Action ID 
(result from packet classification procedure) and Next 
Hop Information Pointer result from IP lookups 
procedure). 

If the incoming Flow-ID mismatches all cache entries in 
this cache block (cache miss), this packet will be forwarded 
by running packet classification and IP lookups procedure. 
Besides, the mismatched cache block also needs to be updated. 
Hit Ratio Analysis 

The simplest way to evaluate cache performance is to 
analyze the cache hit ratio. Since backbone routers are 
considered as the most critical points, we obtained a traffic 
trace from OC-48 backbone routers provided by the NLANR 
PMA project [13]. This traffic trace has 42,870,847 entries, 
including layer-3 and layer-4 information (source IP/port, 
destination IP/port and protocol), which are useful for our 
investigation.  

Several components may affect cache performance such 
as cache size, hash functions, cache associativity, and 
replacement policies. We will consider whether these 
components have major impact on cache hit ratios.  
1. Cache Size: The cache size is equal to the product of the 

number of cache entries and the cache entry size. The 
cache entry is the basic unit for storing cache information 
which is composed of two fields. Field Flow-ID is used to 
store flow information such as source IP address (src_ip), 
destination IP address (dst_ip), source port (src_port), etc. 
The other field, Results, used to record the results from 
packet classification and IP lookups. These two fields 
influence the size of cache entry. If each flow is identified 
by 2-dimensional fields (src_ip,dst_ip), it only needs 8 
bytes for storing Flow-ID. However, in our system, each 
flow is identified by 5-dimensional fields; each cache entry 
needs 16 bytes for storing Flow-ID and information of 
results. In general, the more cache entries is in the system, 
the higher is the cache-hit ratio. However, we can not use 
the entire SRAM for caching because SRAM need also be 
used for storing other data structures such as rule table for 
packet classification and IP lookups. We propose to 
reserve 128KB SRAM as our cache memory, which is 
enough for storing 8192 cache entries. 

2. Hash function: Remember that packet header information 
is used to generate cache index via hash. Without an 
effective hash function, a large number of collisions may 
occur and degrade the cache performance. Traditional hash 
functions, such as SHA-1, MD5, are popular because they 
produce well-balanced output in which a single bit change 
in the input can change every bit of the output with equal 
probability. However, in IXP1200, SHA-1 or MD5 hash 
functions are not supported in hardware. Therefore, 
designing a hash function with less computation to achieve 
approximate performance of MD5 or SHA-1 will be 
helpful for our cache scheme. We propose two simple hash 
algorithms, XOR based hash and ADD based hash, which 
are shown in Fig. 3.2. 

3. Cache associativity: Increasing associativity is a widely 
used technique in CPU cache to reduce the impact of 
conflict misses and increase hit rate. However, our cache 
approach is to put cache information in SRAM, getting or 
updating cache information must issue memory references 
to SRAM. In IXP1200, it is necessary to use SRAM 



transfer registers for communicating between 
microengines and SRAM unit. Nevertheless, in terms of 
microengine, each thread only can access 8 SRAM 
read/write transfer registers, which result in the maximum 
transfer size to be 32-byte (8*4-byte) in one memory 
access. For this reason, we consider that direct mapped or 
2-way set associative cache is suitable for our cache 
approach because only one SRAM read or write is needed 
for getting information from cache or updating information 
to cache.  

4. Cache Replacement Algorithm: From Fig. 3.1, the cache 
index is the pointer used to get the number of cache block. 
If we adopt n-way set associative cache scheme (Typically, 
n = 2, 4, 8 etc.), each cache block has n cache entries. 
Once a cache miss occurs, it is necessary to choose one 
cache entry and replace it with the new one. We apply 
three conventional replacement algorithms (first in first out 
(FIFO), Least-Recently-Used (LRU), and random) to 2-
way set associative cache scheme for evaluating the impact 
on cache hit ratio in our system. 

Trace Simulation 
So far, we have described our cache structure and 

several factors that may influence cache hit ratio. In this 
subsection, we use the collected traffic trace as input to 
analyze cache hit ratio based on these factors. Due to the space 
limit, only results for XOR are illustrated in table 3.1.  

First, consider the performance of hash functions. The 
ADD based hash is better than XOR based hash when cache 
entries are larger than 512. On the contrary, the XOR based 
hash is better than ADD based hash function with small cache 
entries. In summary, the performance of simple hash functions 
is almost equal to that of MD5 hash across all conditions.  

Secondly, we focus on the impacts of cache-hit ratio 
with different cache associativity. Not surprisingly, the 2-way 
set associative cache is better than direct mapped cache by 
2.5% to 5.6%. But the differences are not so significant; we 
cannot ensure the performance of 2-way set associative cache 
is better than direct map. This is because 2-way set associative 
cache has two cache entries, which needs more clock cycles 
for getting/updating information from/to cache memory. In 
addition, it also needs double time for comparing the 
information of cache entry. 

Finally, we consider different replacement polices, the 
FIFO is better than random in most of situations. As to LRU, 
it is better than FIFO and random by 0.4% to 3.7%. However, 
implementation of LRU algorithm is more complex than FIFO, 
this is because LRU needs to record the cache entry which is 
least used and updates this information to cache. In other word, 
LRU needs to update the information (issue a SRAM write) to 
cache whether the cache hit or not, but FIFO only needs to 
update that for a cache miss.  
Table 3.1: cache-hit ratio based on XOR hash function with 

different cache-size and replacement algorithms.  
Cache 
Entry/Size Direct map 2-way FIFO 

2-way 
Random 2-way LRU 

64/1KB 0.431586 0.464565 0.454718 0.481495 
128/2KB 0.503763 0.536422 0.526164 0.55388 

256/4KB 0.56481 0.593504 0.585397 0.615631 

512/8KB 0.622608 0.642971 0.63848 0.672233 
1024/16KB 0.682031 0.695614 0.694472 0.730671 
2048/32KB 0.740807 0.751845 0.751835 0.786135 
4096/64KB 0.796555 0.806116 0.805535 0.833534 
8192/128KB 0.840697 0.847871 0.846772 0.866453 
Experiment Results on IXP1200 Enp-2505 board 

To evaluate the effectiveness of our proposed cache 
design, we implemented three cache schemes including direct 
mapped cache, two-way FIFO cache and two-way LRU cache. 

However, we face another problem: all packets generated by 
IXP NetBench will be cached, and the cache hit ratio will be 
almost 100%. For solving this problem and creating different 
testing cases, we implement a software counter that will 
invalidate the cache block periodically. With this counter, we 
can create different cache hit ratio in our system.  

The experimental environment is the same as Figure 2.4; 
we adopt our proposed classification algorithm, using the 
rule_1000 as our classifier. IXP NetBench generates the input 
traffic with minimum size of packets in this experiment. We 
find that the performance of these three cache schemes 
described above is almost the same. Therefore, we only show 
the results of two-way FIFO cache scheme in Fig. 3.3. 
Observably, with the two-way FIFO cache mechanism, our 
system performance can be improved significantly. In the case 
of 87.5% hat ratio, our system can achieve the IXP NetBench 
transmit speed (71.34Mbps), which has 50% improvement in 
throughput over the system with no cache (35.53Mbps). 
4 CONCLUSIONS 

In this paper, we first explained the needs of network 
processors for today’s complex applications, and introduced 
the hardware architecture and development environment in 
IXP1200. Then we explain the software architecture and 
detailed pack flow in our system. At first, we implement the 
Grid-of-Tries as our classification algorithm. However, its 
heavy memory accesses almost take the 70% processing time 
when dealing with minimum size of packet. To increase the 
performance, we designed and implemented a new 5-
dimensional packet classifier. Our classification algorithm 
needs less memory space than Grid-of-Tries and makes it 
possible to put in fast SRAM. In addition, the logarithmic 
search method of our proposed algorithm is very suitable and 
scalable for packet classification because the typical rule 
tables are not very big in real world. In benchmarking our 
proposed algorithm, our scheme for 1000 rules achieves 
throughput of 35.5 Mbps at minimal size of packets, which is 
much better than the results reported in [12].  

Furthermore, we proposed a cache mechanism for 
IXP1200 because we observed that backbone routers have 
strong temporal locality. Our proposed cache scheme not only 
caches the result from packet classification but also caches the 
result from IP lookup. Only one SRAM-read is needed to 
perform IP address Lookups and packet classification 
procedure when cache hits. With this cache mechanism, the 
throughput of our system is very close to the theoretical 
maximum bandwidth with reasonable hit ratio. 
REFERENCES 
[1] F. Baker, “Requirements for IP Version 4 Routers,” 

Request for Comments - 1812, Network Working Group, 
June 1995. 

[2] F. Baboescu, S. Singh, and G. Varghese, “Packet 
Classification for Core Routers: Is there an alternativeto 
CAMs?,” In IEEE Infocom, 2003. 

[3] Yeim-Kuan Chang, “Fast Binary and Multiway Prefix 
Searches for Software-Based Routers”, submitted for 
publication. 

[4] P. Gupta and N. McKeown, “Algorithms for Packet 
Classification,” IEEE/ACM Trans. Networking, vol.15, 
pp.24-32, 2001. 

[5] Intel Corporation, “Product Brief: IXP12EB Intel® 
IXP1200 Network Processor Ethernet Evaluation Kit,” 
2000. 

[6] Intel Corporation, “Development Tools User’s Guide”, 
March 2002. 

[7] IEEE. Standard 802.3, October 2000. 
[8] Intel Corporation, “IXA SDK 2.01 Developer’s Guide: 

Intel IXA SDK ACE Programming Framework,” 
December 2001. 



[9] Intel Corporation, “SDK 2.01 Reference: IXA SDK 2.01 
Developer’s Guide: Intel IXA SDK ACE Programming 
Framework,” December 2001. 

[10]Intel Corporation, “Reference Manual: Intel® 
microengine C Compiler Language Support,” August 2001. 

[11]Intel Corporation, “Reference Guide: Intel® microengine 
C Networking Library for the IXP1200 Network 
Processor,” December 2001. 

[12]Ying-Dar Lin, Yi-Neng Lin, Shun-Chin Yang and Yu-
Sheng Lin, “DiffServ Edge Routers over Network 
Processor: Implementation and Evaluation,” IEEE 
Network, August 2003. 

[13]F. Baker, “Requirements for IP Version 4 Routers,” 
Request for Comments - 1812, Network Working Group, 
June 1995. 

[14]Hewlett Packard, “Netperf: A Network Performance 
Benchmark,” http:// 
www.netperf.org/netperf/NetperfPage.html, 1995. 

[15]RadiSys Corporation, “ENP2505 Hardware Reference”, 
2002. 

[16]M. A. Ruiz-Sanchez, E.W. Biersack, and W. Dabbous, 
“Survey and taxonomy of IP address lookup algorithms,” 
IEEE/ACM Trans. Networking, vol. 15, pp. 8–23, 2001. 

[17]Quinn O. Sell, Armin. R. Mikler and John L. Gustafson, 
“NetPIPE-A Network Protocol Independent Performance 
Evaluator,” http://www.scl.ameslab.gov/netpipe/, 2004. 

[18]V. Srinivasan, G. Varghese, S. Suri, and M. Waldvagel, 
“Fast and scalable layer four switching,” In Proc. ACM 
SIGCOMM’98, pp. 191–202, 1998. 

[19]A. Tirumala, M. Gates, F. Qin, J. Dugan and J. Ferguson. 
“Iperf - The TCP/UDP band-width measurement tool,” 
http://dast.nlanr.net/Projects/Iperf. 

[20]D. E. Taylor and J. S. Turner, “ClassBench: A Packet 
Classification Benchmark,” Tech. Rep. WUCSE-2004-28, 
Department of Computer Science & 
Engineering,Washington University in Saint Louis, May 
2004. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) F1 binary trie. 
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Figure 2.3: example of the multi-dimensional 
classification. 
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Fig.2.1 Software Architecture of IXP Router 
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Fig.2.2 example of binary prefix search. 
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Figure 2.6: Throughput with varying number of rules 
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Figure 3.1: Functional block of our Caching Approach for 
IXP1200. 

Figure 3.2: ADD or XOR based hash functionThe low order n 
bits of hash output are used to index the 2

n
 cache blocks. 
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